ارتباط نانوساختار و خواص مکانیکی پلی یورتانهای زیست تخریب پذیر بر پایه پلی لاکتیک اسید

دانشگاه صنعتی امیرکبیر
(پلی تکنیک تهران)
واحد ماهشهر
پیشنهاد پایان‌نامه دکترا
ارتباط نانوساختار و خواص مکانیکی پلی یورتانهای زیست تخریب پذیر بر پایه پلی لاکتیک اسید
Nanostructure-Mechanical Properties of Biodegradable Polylactic Acid-based Polyurethanes
اساتید راهنما :
دکتر گیتی میرمحمد صادقی
دکتر حمید گرمابی
محقق:
حسین ایزدی وصفی
۸۷۱۷۰۹۰۱
فهرست مطالب
۱- مقدمه ۱
۲- پلی یورتانهای زیست تخریب پذیر ۲
۲-۱- پلی یورتان های زیست تخریب پذیر بر پایه پلی لاکتیک اسید ۴
۳- پلی (لاکتیک اسید) ۶
۳- ۱- شیمی لاکتیک اسید و پلی لاکتیک اسید و روش های تولید آنها ۶
۳- ۲- مزایا و معایب پلی لاکتیک اسید ۱۰
۳- ۳- کاربردهای پلی (لاکتیک اسید) ۱۲
۳- ۳- ۱- کاربردهای غیر پزشکی (تهیه کالاهای مختلف) ۱۲
۳-۳- ۲- کاربردهای پزشکی ۱۳
۳- ۳- ۲- ۱- نخ بخیه ۱۳
۳- ۳- ۲- ۲- صنایع دارویی ۱۴
۳- ۳- ۲- ۳- کاشتنی ها ۱۴
۳- ۳- ۲- ۴- مهندسی بافت ۱۴
۴- اصلاح پلی لاکتیک اسید ۱۵
۴- ۱- اصلاح توده ۱۵
۴- ۱- ۱- ترکیب شیمیایی ایزومرهای فضایی و تنظیم شرایط فرایندی ۱۵
۴- ۱- ۲- کوپلیمریزاسیون ۱۶
۴- ۱- ۳- آلیاژسازی ۱۷
۴- ۱- ۳- ۱- نرم کننده ها ۱۷
۴- ۱- ۳- ۲- کامپوزیتها و آلیاژهای پلی لاکتیک اسید – پلیمرها یا پرکننده های زیست تخریب ناپذیر ۱۸
۴- ۱- ۳- ۲- ۱- کامپوزیتها و آلیاژهای پلی لاکتیک اسید – نانوذرات ۱۸
۴- ۱- ۳- ۲- کامپوزیتها و آلیاژهای پلی لاکتیک اسید – پلیمرهای زیست تخریب پذیر و تجدید شدنی ۲۰
۴- ۲- اصلاح سطح ۲۱
۵- اسیدهای چرب و استرهای اسیدهای چرب ۲۱
۶- جمع بندی تحقیقات انجام شده ۲۴
۷- پیشنهاد پروژه ۲۵
۷- ۱- ارائه رویکرد مناسب جهت تهیه پلی یورتان زیست تخریب پذیر در راسـتای اصـلاح پـلی لاکتیک اسید ۲۵
۷- ۲- بررسی تاثیر پارامترهای مختلف بر روی پیش پلیمر پلی لاکتیک اسید و پلی یورتان ۲۷
۷- ۳- تعیین مشخصات مختلف پلیمرهای تولید شده (پیـش پلیمرِ پلی لاکتـیک اسیـد و پـلـی یورتان) ۲۷
۷- ۴- مشارکت در دانشِ مورد انتظار ۲۹
۸- جدول زمان‌بندی ۳۰
منابع : ۳۱
۱- مقدمه
نیاز گسترده به مواد پلیمری در سال­های اخیر منجر به تلاش­ های علمی و مهندسی زیادی جهت کشف، گسترش و اصلاح این مواد گردیده است. آمار نشان می­دهد که تولید و مصرف این مواد با توجه به جایگزین شدن آنها به جای مواد دیگر مانند شیشه، فلزات و غیره به سرعت رو به گسترش است. اما نکته قابل توجه این است که علیرغم رشد روزافزون تولید مواد پلیمری و نیاز صنایع مختلف به آنها، در سالهای اخیر مشکلات زیست محیطی ناشی از مصرف آنها نیز افزایش یافته است. سه راه عمده برای مقابله با این مسئله وجود دارد؛ راه اول بهره گیری از پلیمرهایی است که زنجیر اصلی آنها ذاتا زیست تخریب­پذیر می­باشد. راه دوم اختلاط پلیمرها با مواد زیست تخریب­پذیر است. روش های مذکور از نقطه نظر فرایندی و ملاحظات اقتصادی و محدودیت انتخاب مواد و چگونگی اختلاط، قابل تعمق هستند و دشوارهای خاص خود را دارند.
عکس مرتبط با اقتصاد
راه سوم طراحی و سنتز کوپلیمرهایی است که در ساختار شیمیایی آنها واحدهای زیست تخریب­پذیر وجود دارد. با توجه به گستردگی مواد تجزیه­پذیر طبیعی می­توان سیستم­های پلیمری زیست تخریب­پذیر مختلفی را با ساختارهای مولکولی مورد نظر انتخاب و از طریق اختلاط با یکدیگر تهیه یا از طریق روش های مختلف پلیمریزاسیون سنتز نمود. در دو دهه اخیر پلیمرهـای زیست ­تخریب­پذیر[۱] و پلی­استرهای ترموپلاستیک برگرفته از منابع تجدید شدنی به طور گسترده­ای مورد مطالعه و تحقیـق قرار گرفـته­اند [۱]. پلیمرهای زیست تخریب پذیر نیز جزء موادی هستند که در محیط­های فیزیولوژیکی[۲] توسط فرایند شکست زنجیر به بخش­های کوچکتر و در نهایت به مواد کوچک مولکول ساده و پایدار تبدیل می­شوند. تخریب آنها می ­تواند از طریق میکروارگانیسم­های هوازی[۳] یا غیرهوازی[۴]، فرایندهای فعال بیولوژیکی (مانند واکنشهای آنزیم) و یا گسسته شدن آبکافتی[۵] باشد. در جدول ۱ انواع مختلف پلیمرهای زیست تخریب پذیر طبیعی و سنتزی نشان داده شده است [۲]. چنانچه در این جدول مشاهده می­ شود دسته­ای از پلیمرهای زیست تخریب پذیر، پلی یورتان­ها می­باشند. به دلیل حضور نواحی[۶] نرم و سخت در ساختار شیمیایی پلی یورتانهای سگمنته، این دسته از مواد دارای خواص منحصر به فردی هـستند به گـونه­ای که با تغییر سگمنتهای نرم و سخت موجود در آنها می توان یک سیستم پلیمری زیست تخریب با خواص موردنظر تهیه نمود. دسته مهمی از پلی یورتان­های زیست تخریب پذیر پلی (استر یورتان­ها)[۷] هستند که پلی­اُل مورد استفاده در تهیه آنها یک پلی­استر پلی­اُلِ زیست تخریب پذیر می­باشد. گروه­های استری موجود در ساختار شیمیایی پلی­اُل مصرفی (پلی استر پلی­اُل) قابلیت هیدرولیز در محیط زیست را دارند و موجب زیست تخریب­پذیری زنجیرهای اصلی پلی یورتان می­ شود. یکی از پلیمرهای زیست تخریب پذیر و زیست سازگار مورد استفاده به عنوان بلوک ساختاری در تهیه پلی­یورتان­های زیست تخریب پذیر، پلی لاکتیک اسید[۸] است. هدف اصلی در این پروژه سنتز پلی یورتان­های زیست تخریب پذیر بر پایه پلی لاکتیک اسید و بررسی ارتباط ساختار- خواص در آنها می­باشد. همچنین اثر حضور اسیدهای چرب و نانوذرات بر خواص نهایی پلی یورتان­های مذکور مورد بررسی قرار خواهد گرفت.
عکس مرتبط با محیط زیست
در این راستا، در بخش­های بعدی مطالبی در مورد پلی یورتان­های زیست تخریب پذیر، پلی لاکتیک اسید (شیمی لاکتیک اسید و پلی لاکتیک اسید، مزایا و معایب و کاربردهای آن) آمده است. سپس نیز با توجه به معایبی که برای پلی لاکتیک اسید وجود دارد مباحث مرتبط با اصلاح آن نیز به طور کامل بیان شده است. سپس با توجه به رویکرد به کار گرفته شده در این پروژه، مختصری در مورد اسیدهای چرب توضیح داده شده است. نهایتا پیشنهاد پروژه ارائه گردیده است.
جدول ۱: پلیمرهای زیست تخریب پذیر طبیعی و سنتزی [۲]

۲- پلی یورتان­های زیست تخریب­پذیر
دسته مهمی از پلیمرهای زیست تخریب پذیر، پلی یورتان­ها هستند. پلی یورتان ها، گروهی از پلیمرها هستند که از یک دی ایزوسیانات[۹]، یک بسـط دهنده زنجیر[۱۰] و یک پلی اُل[۱۱] (مـانند پلی استـر یا پلـی اتر) تهـیه مـی شـونـد. پـلـی­یورتان­هایی که از واکنش این اجزاء با یکدیگر به دست می آیند در واقع کوپلیمرهای چند بلوکـی[۱۲] یـا پلـی­یورتان­های سگمنتی[۱۳] هستند که شامل سگمنت­های سختِ یـورتانی و سگـمنـت­هـای نــرمِ پـلی­استری یا پلی اتری می­باشند. سگمنت سخت به مانند یک فیلر تقویت کننده عمل کرده و باعث پایداری ابعادی پلی یورتان می­گردد و سگمنت نرم نیز خاصیت الاستومری به آن می­دهد [۳]. خواص فیزیکی شیمیایی این نوع پلیمرها به طور مستقیم به ترکیب درصد شیمیاییِ سگمنت­های سخت و نرم، وزن مولکولی و نسبت آنها بستگی دارد [۴].
پلی یورتان­های زیست تخریب پذیر، دسته­ای از پلی یورتان­ها هستند که در تهیه آنها از پلی­اُل­هایی استفاده می­ شود که دارای خاصیت زیست تخریب­پذیری هستند. به عنوان مثال می­توان از پلـی یـورتان­های زیست تخریب­پذیری که بر پایه نشاسته [۵]، پلی­کاپرولاکتون [۶]، استر اسیدهای چـرب [۷] و هـمچنیـن پلـی­لاکتیک اسید [۹,۸] هستند نام برد. دی ایزوسیانات­های استفاده شده در ساخت پلی یورتـان­های زیسـت تخـریب­پذیـر مـی­توانند مشابه با ساخت پلی یورتان­های مرسوم با گروه­های الکلی پلی­ال وارد واکنش شده و تولید گروه­های یورتانی را به دنبال داشته باشند [۵] یا اینکه می­توانند به عنوان یک بسط دهنده زنجیر عمل کنند [۹] که در این حالت پـلی­استرهای به کار گرفته شده در ساخـت پلی یـورتـان، پـلی­استرهایی با وزن مولکولی پایین (پیش پلیمر) بوده و دی ایزوسیانات به عنوان یک بسط دهنده زنجیر عمل کرده و پلی­یورتانی با وزن مولکولی بالا تهیه شده است.
پلی یورتان­های زیست تخریب پذیرِ تهیه شده بر پایه پلی استرهای زیست سازگار به طور گسترده­ای در کاربردهای بیوپزشکی[۱۴] مورد استفاده و آزمایش قرارگرفته­اند. نکته­ای که در مورد این نوع از پلـی یورتان­ها حائز اهمیت است این است که علیرغم خواص مکانیکی و زیست سازگاری خوبی که دارند، پایداری مولکولی آنها در طولانی مدت در محیـط بافت­های زنده محدود است [۱۰]. پلی (استر یورتان­ها) کاربردهای گسترده­ای به عنوان لوازم پزشکی دارند. تخریب این مواد از طریق هیدرولیز شیمیایی یا آنزیمی در اتصال استر آلیفاتیکی آنها صورت می­گیرد. پایداری در برابر هیدرولیز پلی (اتر یورتان­ها) از پلی (استر یورتان­ها) بیشتر است، اما پلی (اتر یورتان­ها) می­توانند هم توسط فرایندهای اکسیداسیونی و هم توسط فرایندهای هیدرولیزی (که می­توانند توسط آنزیم­ها تسریع یابند) تخریب شوند [۱۱]. همچنین، علیرغم این حقیقت که محدودیت در پایداری مولکولیِ پلی یورتان­ها باعث ایجاد مشکلاتی در ساخت اندام ­های مصنوعی بدن توسـط این مـواد شده است، اما تحـقیقات گسـترده­ای در زمینه ساخـت و توسـعه پـلی­یورتان­های زیست تخریب پذیر انجام شده و در حال گسترش است [۱۲].
همان­گونه که در بالا هم بدان اشاره شد، زیست تخریب پذیری پلی (استر یورتان­ها) از طریـق تخریـب گـروه­های استری موجود در زنجیره اصلی پلیمر صورت می­گیرد. یکی از پلیمرهای زیست تخریب پذیر و زیست سازگار مورد استفاده به عنوان بلوک ساختاری در تهیه پلی­یورتان­های زیست تخریب پذیر، پلی لاکتیک اسید[۱۵] است. پلی لاکتیک اسید عضوی از خانواده پلی استرهای آلیفاتیک است که تحقیقات اولیه در مورد آن بیشتر بر روی خواص و کاربردهای بیوپزشکی پلی لاکتیک اسید متمرکز بوده است.
۲-۱- پلی یورتان های زیست تخریب پذیر بر پایه پلی لاکتیک اسید
سنتز پلی (استر یورتان) زیست تخریب پذیر بر پایه پلی لاکتیک اسید شامل دو مرحله است: مرحله اول آن سنتز پیش پلیمر پلی لاکتیک اسید هیدروکسیله[۱۶] با جرم مولکولی پایین توسط پلیمریزاسیون کندانسیونی لاکتیک اسید است که در این مرحله ماده­ای مانند ۱و۴-بوتان­دی­اُل استفاده می­ شود تا انتهای زنجیرهای PLA گروه­های هیدروکسیل (-OH) نشانده شود. در مرحله دوم نیز زنجیرهای پیش پلیمر حاصل توسط یک دی ایزوسیانات به یکدیگر متصل می­شوند تا پلی (استر یورتان) با جرم مولکولی بالا تهیه شود. روند انجام دو مرحله مذکور به صورت شماتیک در طرح ۱ آمده است [۱۳].

طرح ۱: طرح شماتیک سنتز پلی (استر یورتان) از لاکتیک اسید [۱۳]
تحقیقاتZeng و همکارانش [۹] در ساخت پلی (استر یورتان­)های (PEU) بر پایه پلی لاکتیک اسید و پلی بوتیلن سوکسینات (PBS) نشان می­دهد که وزن مولکولی پلی یورتان با افزایش مقدار PBS افزایش می­یابد. آنالیز حرارتی نمونه­ها نیز نشان می­دهد که سگمنت­های PLA و PBS در فاز آمورف با یکدیگر سازگار بوده و کریستالیزاسیون PEU بیشتر به دلیل PBS اتفاق می­افتد، همچنین پلی یورتان­های نهایی نسبت به پلی لاکتیک اسید هیدروکسیله از پایداری حرارتی بیشتری برخوردارند. همچنین نتیجه دیگر تحقیقات ایشان [۱۴] در رابطه با تخریب این نوع از پلی استر یورتان­ها حاکی از این است که پایداری حرارتی پلی استر یورتان­های حاصل از PLA و PBS در هوا نسبت به نیتروژن بیشتر است؛ به بیان دیگر تخریب حرارتی PEU در نیتروژن راحت­تر از تخریب حرارتی آن در هوا رخ می­دهد.
در تحقیقی که Rich و همکارانش [۱۵] در رابطه با پلی استر یورتان­های بر پایه پلی لاکتیک اسید انجام داده­اند از پرکننده­ های بیوسرامیکی در تهیه کامپوزیت­های زیست­سازگار (به منظور ساخت استخوان مصنوعی) استفاده کرده ­اند. نتیجه مطالعات آنها نشان می­دهد که افزودن فیلرهای بیوفعال سرامیکی باعث افزایش سفتی، مدول و دمای انتقال شیشه ­ای پلی یورتان می­گردد که نشان از برهم کنش قوی بین فیلر و ماتریس دارد. همچنین پس از حدود ۵ هفته از شروع هیدرولیز کامپوزیت­های مذکور هنوز خواص دینامیکی مکانیکی قابل قبولی از نمونه­ها دیده شده است.
در مطالعه­ ای که توسط Borda و همکارانش [۱۶] صورت گرفته است پلی یورتان­های بر پایه پلی لاکتیک اسید سنتز شده است و تاثیر پارامترهای مختلف بر روی جرم مولکولی پلی یورتان نهایی بررسی شده است. این پارامترها شامل زمان واکنش، دمای واکنش، نسبت مولی مواد اولیه (پیش پلیمر پلی لاکتیک اسید و دی ایزوسیانات) و مقدار اضافی و نوع ایزوسیاناتِ به کار گرفته شده، و همچنین نوع کاتالیستِ استفاده شده می­باشد. بر طبق تحقیق ایشان، افزایش زمان واکنش باعث افزایش جرم مولکولی PEU نهایی می­گردد، اما افزایش بسیار زیاد زمان واکنش منجر به تولید پلیمر شبکه­ ای و غیرقابل حل در حلال می­ شود. از اینرو بهترین حالت برای زمان واکنش بر طبق تحقیقات ایشان، مدت زمان ۳ تا ۵ ساعت برای MDI و ۶ تا ۸ ساعت برای TDI است. پس از تثبیت زمان واکنش، در رابطه با تاثیر دمای واکنش نتایج حاصل نشان می­دهد که زمان واکنش تاثیر شدیدی بر وزن مولکولی دارد و بهترین مقدار در مورد این پارامتر، دمای °C 110 می­باشد. همچنین از بین کاتالیست­های مورد بررسی، موثرترین کاتالیست برای افزایش سرعت واکنش ترکیب اکتُئات قلع[۱۷] می­باشد که منجر به بالاترین وزن مولکولی می­گردد. در رابطه با فاکتور تاثیرگذار بعدی که نسبت مولی PLA و ایزوسیانات است نتایج ایشان حاکی از این واقعیت است که افزایش غلظت ایزوسیانات، سرعت واکنش بین ایزوسیانات و گروه کربوکسیل را افزایش می­دهد، البته این امر منجر به افزایش نرخ واکنش بین ایزوسیانات با هیدروژن گروه آمیدی نیز می­ شود که نتیجه آن افزایش احتمال شبکه­ ای شدن می­باشد. بنابراین بایستی در این راستا مقدار بهینه این نسبت لحاظ گردد. بر اساس تحقیقات صورت گرفته، نسبت مولی بهینه نسبت میزان سه به یک ایزوسیانات به PLA برای هر دو نوع ایزوسیانات MDI و TDI است.
نتیجه مطالعه Ren و همکارانش [۱۷] در رابطه با تاثیر پارامتر زمان واکنش بر جرم مولکولی، دمای انتقال شیشه ­ای و دمای ذوب پلی استر یورتان­های بر پایه لاکتیک اسید و تولوئن دی ایزوسیانات (TDI) نیز نشان می­دهد فزایش زمان واکنش پیش پلیمر لاکتیک اسید هیدروکسیله (PLA-OH) با دی ایزوسیانات تا دو ساعت باعث افزایش جرم مولکولی پلی یورتان نهایی و در نتیجه افزایش دمای ذوب و انتقال شیشه ­ای آن می­گردد اما با افزایش بیشتر زمان واکنش، به دلیل تخریب حرارتی و همچنین کاهش گروه­های فعال جرم مولکولی کاهش می­یابد. بنابراین زمان­های کوتاهتر و دماهای پایین­تر پلیمریزاسیون از تخریب حرارتی و واکنش­های جانبی جلوگیری کرده و وزن مولکولی پلی یورتان نهایی را افزایش می­دهد. در تحقیق دیگر توسط این گروه [۱۸] از HDI به عنوان بسط دهنده زنجیر استفاده شده است و وزن مولکولی و دمای انتقال شیشه ­ای پلی یورتان نهایی با پیش پلیمر لاکتیک اسید مقایسه شده است. متوسط وزنی وزن مولکولی پلی یورتان تهیه شده در اثر واکنش بسط زنجیر تا حدود ۱۰ برابر پیش پلیمر لاکتیک اسید نیز رسیده است و دمای انتقال شیشه ­ای آن حدود ۵ درجه افزایش داشته است. این افزایش چندین برابر وزن مولکولی به این دلیل است که با طولانی شدن زمان واکنش، اتصال چندین زنجیر به همدیگر و در نتیجه افزایش وزن مولکولی امکان­ پذیر می­گردد. البته مقدار اضافی گروه ایزوسیانات ممکن است با دیگر انتهاهای زنجیرها واکنش داده و گروه­های آمیدی به وجود آورَد که این گروه­ها در اثر واکنش با گروه یورتانی تشکیل گروه­های آلوفانات[۱۸] می­دهد که منجر به شاخه­ای شدن زنجیر و در نتیجه افزایش پلی دیسپرسیته پلی یورتان می­گردد.
در سال­های اخیر با توجه به بحث آلودگی محیط زیست و همچنین افزایش قیمت مواد پلیمریِ بر پایه نفت، پلی لاکتیک اسید بیشتر مورد توجه قرار گرفته است تا بتواند در آینده جایگزین مواد پلیمری دیگر گردد. اما معایبی مانند شکنندگی، پایداری حرارتی پایین و هزینه بالا باعث محدود کردن کاربردهای آن گشته است. لذا رویکرهای مختلفی در جهت اصلاح آن در نظر گرفته شده است. در ادامه پس از معرفی بیشتر این پلیمر، مطالبی در رابطه با اصلاح آن در راستای بهبود خواص آن آورده شده است.
۳- پلی (لاکتیک اسید)
۳- ۱- شیمی لاکتیک اسید و پلی لاکتیک اسید و روش­های تولید آنها
پلی لاکتیک اسید (PLA) یکی از پلیمرهای زیست تخریب پذیر است که توسعه آن با سنتز لاکتاید[۱۹] (فرمولِ منتشر شده توسط بیشاف و والدن[۲۰] در سال ۱۸۹۳) شروع شد. پلی لاکتیک اسید با وزن مولکولی پایین اولین بار توسط کاروترز[۲۱] و همکارانش سنتز شد [۱۹]. کمپانی دوپونت[۲۲] در سال ۱۹۵۴ تولید این پلیمر را به صورت تجاری شروع کرد [۲۰]. تجاری شدن این پلیمر جهت تهیه الیاف آن با استحکام بالا توسط اتیکون[۲۳] با نام تجاری ویکریل[۲۴] در سال ۱۹۷۲ صورت گرفت [۲۱]. کمپانی­های شیمادزو[۲۵] و کانبوگوسن[۲۶] (ژاپن) نیز در سال ۱۹۹۲ الیاف پلی لاکتیک اسید را به صورت آزمایشی تولید کرده و سپس در سال ۱۹۹۴ تولید تجاری آن را تحت نام تجاری لاکترون[۲۷] شروع کردند [۲۲]. پس از آن هم در سال ۱۹۹۷ شرکت فرانسوی فایبر وب فرانس[۲۸] الیاف PLA را تحت نام تجاری دپوسا[۲۹] تولید کردند [۲۳]. شیمی پلی لاکتیک اسید شامل پلیمریزاسیون لاکتیک اسید و فرایند کردن آن می­باشد.

 

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

Releated

بررسی رابطه مدیریت سرمایه در گردش با ضریب واکنش سود و مدیریت سود در بین شرکت های پذیرفته شده در بورس اوراق بهادار تهران- قسمت ۵

در اجراء سیاست مدیریت سرمایه در گردش، در مورد بدهى‌هاى جارى که هم‌اکنون مورد بحث است، فرض بر این گذاشته مى‌شود که نرخ بهره وام‌هاى کوتاه‌مدت از نرخ بهره وام‌هاى بلندمدت کمتر است(راهنمای رودپشتی، ۱۳۸۷).۲-۲-۹-۲-۱ استراتژى محافظه‌کارانهمدیر محافظه‌کار مى‌کوشد تا در ساختار سرمایه شرکت میزان وام‌هاى کوتاه‌مدت را به حداقل ممکن برساند. او براى تهیه […]

بررسی آگاهی، نگرش و عملکرد دانش آموزان پسر دبیرستانی شهرستان یزد نسبت به فعالیت بدنی و ورزش- قسمت ۴

معاون پژوهشیدانشگاه آزاد اسلامیواحد علوم تحقیقات هرمزگان   چکیده   هدف این پژوهش، بررسی آگاهی، نگرش و عملکرد دانش آموزان پسر دبیرستانی شهرستان یزد نسبت به فعالیت بدنی و ورزش می باشد.با توجه به جدول مورگان، تعداد ۳۷۰ نفر به روش تصادفی خوشه ای به عنوان نمونه آماری انتخاب شده است. برای سنجش عملکرد، آگاهی […]